
NAG C Library Chapter Introduction

f08 – Least-squares and Eigenvalue Problems (LAPACK)

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background to the Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Linear Least-squares Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Orthogonal Factorizations and Least-squares Problems . . . . . . . . . . . . . . . . . 4

2.2.1 QR factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 LQ factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 QR factorization with column pivoting . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 The Singular Value Decomposition and Least-squares Problems . . . . . . . . . . 6

2.5 Symmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Generalized Symmetric-Definite Eigenvalue Problems . . . . . . . . . . . . . . . . . 7

2.7 Packed Storage for Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Band Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.9 Nonsymmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.10 Generalized Nonsymmetric Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . 9

2.11 The Sylvester Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.12 Error and Perturbation Bounds and Condition Numbers . . . . . . . . . . . . . . . . 11

2.12.1 Least-squares problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.12.2 The singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.12.3 The symmetric eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.12.4 The generalized symmetric-definite eigenproblem . . . . . . . . . . . . . . . . . . . 14
2.12.5 The nonsymmetric eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12.6 Balancing and condition for the nonsymmetric eigenproblem . . . . . . . . . . . . 15
2.12.7 The generalized nonsymmetric eigenvalue problem . . . . . . . . . . . . . . . . . . 16
2.12.8 Balancing the generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 16

2.13 Block Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Recommendations on Choice and Use of Available Functions . . . . . . . . 17

3.1 Available Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Orthogonal factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Singular value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.3 Symmetric eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Generalized symmetric-definite eigenvalue problems . . . . . . . . . . . . . . . . . 20
3.1.5 Nonsymmetric eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.6 Generalized nonsymmetric eigenvalue problems . . . . . . . . . . . . . . . . . . . . 22
3.1.7 Sylvester’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 NAG Names and LAPACK Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Matrix Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Conventional storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Packed storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3645/7] f08.1



3.3.3 Band storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 Tridiagonal and bidiagonal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Real diagonal elements of complex matrices . . . . . . . . . . . . . . . . . . . . . . 28
3.3.6 Representation of orthogonal or unitary matrices . . . . . . . . . . . . . . . . . . . 28

3.4 Parameter Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Option parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Problem dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 General purpose functions (eigenvalues and eigenvectors) . . . . . . . . . . . . . . 29

4.2 General purpose functions (singular value decomposition) . . . . . . . . . . . . . . 38

5 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Functions Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . 41

7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Introduction – f08 NAG C Library Manual

f08.2 [NP3645/7]



1 Scope of the Chapter

This chapter provides functions for the solution of linear least-squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides functions for:

– solution of linear least-squares problems

– solution of symmetric eigenvalue problems

– solution of nonsymmetric eigenvalue problems

– solution of singular value problems

– solution of generalized symmetric-definite eigenvalue problems

– matrix factorizations associated with the above problems

– estimating condition numbers of eigenvalue and eigenvector problems

– estimating the numerical rank of a matrix

– solution of the Sylvester matrix equation

Functions are provided for both real and complex data.

For a general introduction to the solution of linear least-squares problems, you should turn first to
Chapter f04. The decision trees, at the end of Chapter f04, direct you to the most appropriate functions in
Chapter f04 or Chapter f08. Chapter f04 contains Black Box functions which enable standard linear least-
squares problems to be solved by a call to a single function.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter f02.
The decision trees, at the end of Chapter f02, direct you to the most appropriate functions in Chapter f02.
Chapter f02 contains Black Box functions which enable some standard types of problem to be solved by a
call to a single function. Often functions in Chapter f02 call Chapter f08 functions to perform the
necessary computational tasks. However, divide and conquer algorithms for symmetric (Hermitian)
eigenvalue problem are available only in this chapter and they can be considered as Black Box functions.

The functions in this chapter (f08) handle only dense, band, tridiagonal and Hessenberg matrices (not
matrices with more specialized structures, or general sparse matrices). The decision trees in Section 4
direct you to the most appropriate functions in Chapter f08.

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that every user will need to read all of the following sections, but rather will pick out
those sections relevant to their particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least-squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan (1996).

2.1 Linear Least-squares Problems

The linear least-squares problem is

minimize
x

kb�Axk2; ð1Þ

where A is an m by n matrix, b is a given m element vector and x is an n element solution vector.

In the most usual case m � n and rankðAÞ ¼ n, so that A has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rankðAÞ ¼ m, there are an infinite number of solutions x which exactly satisfy
b�Ax ¼ 0. In this case it is often useful to find the unique solution x which minimizes kxk2, and the
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problem is referred to as finding a minimum-norm solution to an underdetermined system of linear
equations.

In the general case when we may have rankðAÞ < minðm;nÞ – in other words, A may be rank-deficient –
we seek the minimum-norm least-squares solution x which minimizes both kxk2 and kb�Axk2.
This chapter (f08) contains computational functions that can be combined with functions in Chapter f07 to
solve these linear least-squares problems. The next two sections discuss the factorizations that can be used
in the solution of linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

A number of functions are provided for factorizing a general rectangular m by n matrix A, as the product
of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ ¼ I; a complex matrix Q is unitary if QHQ ¼ I. Orthogonal or
unitary matrices have the important property that they leave the two-norm of a vector invariant, so that

kxk2 ¼ kQxk2;

if Q is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least-squares problems. They may also be used
to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful tools
in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

A ¼ Q
R
0

��
; if m � n;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If A is
of full rank n, then R is non-singular. It is sometimes convenient to write the factorization as

A ¼ Q1 Q2Þð R
0

��

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1 R2Þð ; if m < n;

where R1 is upper triangular and R2 is rectangular.

The QR factorization can be used to solve the linear least-squares problem (1) when m � n and A is of
full rank, since

kb�Axk2 ¼ kQTb�QTAxk2 ¼
c1 � Rx

c2

� �����
����
2

;

where

c � c1
c2

��
¼

QT
1 b

QT
2 b

1
A

0
@ ¼ QTb;

and c1 is an n element vector. Then x is the solution of the upper triangular system

Rx ¼ c1:
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The residual vector r is given by

r ¼ b�Ax ¼ Q
0

c2

��
:

The residual sum of squares krk2
2
may be computed without forming r explicitly, since

krk2 ¼ kb�Axk2 ¼ kc2k2:

2.2.2 LQ factorization

The LQ factorization is given by

A ¼ L 0Þð Q ¼ L 0Þð Q1

Q2

��
¼ LQ1; if m � n;

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), Q1 consists of the first m rows
of Q, and Q2 the remaining n�m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AH if A is complex),
since

A ¼ L 0Þð Q , AT ¼ QT LT

0

��
:

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax ¼ b where A is m by n with m < n and has rank m. The solution is given by

x ¼ QT L�1b
0

��
:

2.2.3 QR factorization with column pivoting

To solve a linear least-squares problem (1) when A is not of full rank, or the rank of A is in doubt, we can
perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by

A ¼ Q
R
0

��
PT ; m � n;

where Q and R are as before and P is a (real) permutation matrix, chosen (in general) so that

jr11j � jr22j � � � � � jrnnj
and moreover, for each k,

jrkkj � kRk:j;jk2; j ¼ kþ 1; . . . ; n:

If we put

R ¼ R11 R12

0 R22

��

where R11 is the leading k by k upper triangular submatrix of R then, in exact arithmetic, if rankðAÞ ¼ k,
the whole of the submatrix R22 in rows and columns kþ 1 to n would be zero. In numerical computation,
the aim must be to determine an index k, such that the leading submatrix R11 is well-conditioned, and R22

is negligible, so that

R ¼ R11 R12

0 R22

��
’ R11 R12

0 0

��
:

Then k is the effective rank of A. See Golub and Van Loan (1996) for a further discussion of numerical
rank determination.

The so-called basic solution to the linear least-squares problem (1) can be obtained from this factorization
as
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x ¼ P
R�1

11 ĉc1
0

��
;

where ĉc1 consists of just the first k elements of c ¼ QTb.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A ¼ U�V T ; ðA ¼ U�V H in the complex caseÞ
where U and V are orthogonal (unitary) and � is an m by n diagonal matrix with real diagonal elements,
�i, such that

�1 � �2 � � � � � �minðm;nÞ � 0:

The �i are the singular values of A and the first minðm;nÞ columns of U and V are the left and right

singular vectors of A. The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi ðor AHui ¼ �iviÞ
where ui and vi are the ith columns of U and V respectively.

The computation proceeds in the following stages.

1. The matrix A is reduced to bidiagonal form A ¼ U1BV
T
1 if A is real (A ¼ U1BV

H
1 if A is complex),

where U1 and V 1 are orthogonal (unitary if A is complex), and B is real and upper bidiagonal when
m � n and lower bidiagonal when m < n, so that B is nonzero only on the main diagonal and either
on the first superdiagonal (if m � n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�V
T
2 , where U2 and V 2 are orthogonal

and � is diagonal as described above. The singular vectors of A are then U ¼ U1U2 and V ¼ V 1V 2.

If m � n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD of

the n by n matrix R, since if A ¼ QR and R ¼ U�V T , then the SVD of A is given by A ¼ ðQUÞ�V T.

Similarly, if m � n, it may be more efficient to first perform an LQ factorization of A.

2.4 The Singular Value Decomposition and Least-squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least-squares
problem (1). The effective rank, k, of A can be determined as the number of singular values which exceed

a suitable threshold. Let �̂� be the leading k by k submatrix of �, and V̂V be the matrix consisting of the
first k columns of V . Then the solution is given by

x ¼ V̂V �̂��1ĉc1;

where ĉc1 consists of the first k elements of c ¼ UTb ¼ UT
2U

T
1 b.

2.5 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors, z 6¼ 0,
such that

Az ¼ �z; A ¼ AT ; where A is real:

For the Hermitian eigenvalue problem we have

Az ¼ �z; A ¼ AH; where A is complex:

For both problems the eigenvalues � are real.

When all eigenvalues and eigenvectors have been computed, we write

A ¼ Z�ZT ðor A ¼ Z�ZH if complexÞ;
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where � is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem functions is to compute values of � and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is real

symmetric this decomposition is A ¼ QTQT with Q orthogonal and T symmetric tridiagonal. If A is

complex Hermitian, the decomposition is A ¼ QTQH with Q unitary and T , as before, real

symmetric tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all

eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T ¼ S�ST , where S
is orthogonal and � is diagonal. The diagonal entries of � are the eigenvalues of T , which are also
the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A are the

columns of Z ¼ QS, so that A ¼ Z�ZT (Z�ZH when A is complex Hermitian).

This chapter now supports three primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(i) the divide and conquer algorithm;

(ii) the QR algorithm;

(iii) bisection followed by inverse iteration.

The divide and conquer algorithm is generally more efficient than the traditional QR algorithm and is
recommended for computing all eigenvalues and eigenvectors. Furthermore, eigenvalues and eigenvectors
can be obtained by calling one single function in the case of the divide and conquer algorithm. In general,
more than one function has to be called if the QR algorithm or bisection followed by inverse iteration is
used.

2.6 Generalized Symmetric-Definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az ¼ �Bz, ABz ¼ �z,
and BAz ¼ �z, where A and B are real symmetric or complex Hermitian and B is positive-definite. Each
of these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky

factorization of B as either B ¼ LLT or B ¼ UTU (LLH or UHU in the Hermitian case).

With B ¼ LLT , we have

Az ¼ �Bz ) ðL�1AL�T ÞðLTzÞ ¼ �ðLTzÞ:
Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix

C ¼ L�1AL�T and y ¼ LTz. In the complex case C is Hermitian with C ¼ L�1AL�H and y ¼ LHz.

Table 1 summarizes how each of the three types of problem may be reduced to standard form Cy ¼ �y,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must be
replaced by conjugate-transposes.
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Type of problem Factorization of B Reduction Recovery of eigenvectors

1. Az ¼ �Bz B ¼ LLT ;

B ¼ UTU

C ¼ L�1AL�T ;

C ¼ U�TAU�1

z ¼ L�Ty;

z ¼ U�1y

2. ABz ¼ �z B ¼ LLT ;

B ¼ UTU

C ¼ LTAL;

C ¼ UAUT

z ¼ L�Ty;

z ¼ U�1y

3. BAz ¼ �z B ¼ LLT ;

B ¼ UTU

C ¼ LTAL;

C ¼ UAUT

z ¼ Ly;

z ¼ UTy

Table 1
Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard problem
Cy ¼ �y, this may then be solved using the functions described in the previous section. No special
functions are needed to recover the eigenvectors z of the generalized problem from the eigenvectors y of
the standard problem, because these computations are simple applications of Level 2 or Level 3 BLAS (see
Chapter f16).

2.7 Packed Storage for Symmetric Matrices

Functions which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of
the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of
length nðnþ 1Þ=2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.

Functions designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

2.8 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of sub-diagonals or super-
diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to reduce the
amount of work and storage required. The storage scheme for band matrices is described in Section 3.3.

If the problem is the generalized symmetric definite eigenvalue problem Az ¼ �Bz and the matrices A and
B are additionally banded, the matrix C as defined in Section 2.6 is, in general, full. We can reduce the
problem to a banded standard problem by modifying the definition of C thus:

C ¼ XTAX; where X ¼ U�1Q or L�TQ;

where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required to

form C. Instead of the standard Cholesky factorization of B as UTU or LLT , we use a split Cholesky

factorization B ¼ STS, where

S ¼ U11

M21 L22

��

with U11 upper triangular and L22 lower triangular of order approximately n=2; S has the same bandwidth
as B.
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2.9 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors,
v 6¼ 0, such that

Av ¼ �v:

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u 6¼ 0 satisfying

uTA ¼ �uT ðuHA ¼ �uH when u is complexÞ
is called a left eigenvector of A.

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A ¼ ZTZT ;

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2 diagonal
blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the complex
case, the Schur factorization is

A ¼ ZTZH;

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 � k � n), the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of T .
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T .

The two basic tasks of the nonsymmetric eigenvalue functions are to compute, for a given matrix A, all n
values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A is reduced to upper Hessenberg form H which is zero below the first subdiagonal.

The reduction may be written A ¼ QHQT with Q orthogonal if A is real, or A ¼ QHQH with Q
unitary if A is complex.

2. The upper Hessenberg matrix H is reduced to Schur form T , giving the Schur factorization

H ¼ STST (for H real) or H ¼ STSH (for H complex). The matrix S (the Schur vectors of H)
may optionally be computed as well. Alternatively S may be postmultiplied into the matrix Q
determined in stage 1, to give the matrix Z ¼ QS, the Schur vectors of A. The eigenvalues are
obtained from the diagonal elements or diagonal blocks of T .

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H, and then the eigenvectors can be multiplied by
the matrix Q in order to transform them to eigenvectors of A. Alternatively the eigenvectors of T can
be computed, and optionally transformed to those of H or A if the matrix S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.12.6 below.

2.10 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding
eigenvectors, v 6¼ 0, such that

Av ¼ �Bv:

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair ðA;BÞ, and a
vector u 6¼ 0 satisfying
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uTA ¼ �uTB ðuHA ¼ �uHB when u is complexÞ
is called a left eigenvector of the matrix pair ðA;BÞ.
If B is singular then the problem has one or more infinite eigenvalues � ¼ 1, corresponding to Bv ¼ 0.
Note that if A is non-singular, then the equivalent problem �Av ¼ Bv is perfectly well defined and an
infinite eigenvalue corresponds to � ¼ 0. To deal with both finite (including zero) and infinite eigenvalues,
the functions in this chapter do not compute � explicitly, but rather return a pair of numbers ð�; �Þ such
that if � 6¼ 0

� ¼ �=�

and if � 6¼ 0 and � ¼ 0 then � ¼ 1. � is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small � rather than an exact zero.

For a given pair ðA;BÞ the set of all the matrices of the form ðA� �BÞ is called a matrix pencil and �
and v are said to be an eigenvalue and eigenvector of the pencil ðA� �BÞ. If A and B are both singular
and share a common null-space then

detðA� �BÞ � 0

so that the pencil ðA� �BÞ is singular for all �. In other words any � can be regarded as an eigenvalue.
In exact arithmetic a singular pencil will have � ¼ � ¼ 0 for some ð�; �Þ. Computationally if some pair
ð�; �Þ is small then the pencil is singular, or nearly singular, and no reliance can be placed on any of the
computed eigenvalues. Singular pencils can also manifest themselves in other ways; see, in particular,
Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
ðA;BÞ defined in the real case as

A ¼ QSZT ; B ¼ QTZT ;

where Q and Z are orthogonal, T is upper triangular with non-negative diagonal elements and S is upper
quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to complex
conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A ¼ QSZH; B ¼ QTZH;

where Q and Z are unitary and S and T are upper triangular, with T having real non-negative diagonal
elements. The columns of Q and Z are called respectively the left and right generalized Schur vectors and
span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

The two basic tasks of the generalized nonsymmetric eigenvalue functions are to compute, for a given pair
ðA;BÞ, all n values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u,
and the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair ðA;BÞ is reduced to generalized upper Hessenberg form ðH;RÞ, where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be

written as A ¼ Q1HZT
1 ; B ¼ Q1RZ

T
1 in the real case with Q1 and Z1 orthogonal, and

A ¼ Q1HZH
1 ; B ¼ Q1RZ

H
1 in the complex case with Q1 and Z1 unitary.

2. The generalized upper Hessenberg form ðH;RÞ is reduced to the generalized Schur form ðS; T Þ using
the generalized Schur factorization H ¼ Q2SZ

T
2 , R ¼ Q2TZ

T
2 in the real case with Q2 and Z2

orthogonal, and H ¼ Q2SZ
H
2 ; R ¼ Q2TZ

H
2 in the complex case. The generalized Schur vectors of

ðA;BÞ are given by Q ¼ Q1Q2, Z ¼ Z1Z2. The eigenvalues are obtained from the diagonal elements
(or blocks) of the pair ðS; T Þ.

3. Given the eigenvalues, the eigenvectors of the pair ðS; T Þ can be computed, and optionally
transformed to those of ðH;RÞ or ðA;BÞ.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix pair.
This is discussed further in Section 2.12.8 below.
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2.11 The Sylvester Equation

The Sylvester equation is a matrix equation of the form

AX þXB ¼ C;

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the solution
matrix X, m by n matrices. The solution of a special case of this equation occurs in the computation of
the condition number for an invariant subspace, but a combination of functions in this chapter allows the
solution of the general Sylvester equation.

2.12 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the functions in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor pðnÞ (or pðm;nÞ), which grows as a function of the matrix
dimension n (or matrix dimensions m and n). It measures how errors can grow as a function of the matrix
dimension, and represents a potentially different function for each problem. In practice, it usually grows
just linearly; pðnÞ � 10n is often true, although generally only much weaker bounds can be actually
proved. We normally describe pðnÞ as a ‘modestly growing’ function of n. For detailed derivations of
various pðnÞ, see Golub and Van Loan (1996) and Wilkinson (1965).

For linear equation (see Chapter f07) and least-squares solvers, we consider bounds on the relative error
kx� x̂xk=kxk in the computed solution x̂x, where x is the true solution. For eigenvalue problems we

consider bounds on the error j�i � �̂�ij in the ith computed eigenvalue �̂�i, where �i is the true ith
eigenvalue. For singular value problems we similarly consider bounds j�i � �̂�ij.
Bounding the error in computed eigenvectors and singular vectors v̂vi is more subtle because these vectors
are not unique: even though we restrict kv̂vik2 ¼ 1 and kvik2 ¼ 1, we may still multiply them by arbitrary

constants of absolute value 1. So to avoid ambiguity we bound the angular difference between v̂vi and the
true vector vi, so that

�ðvi; v̂viÞ ¼ acute angle between vi and v̂vi
¼ arccos jvHi v̂vij:

ð2Þ

Here arccosð�Þ is in the standard range: 0 � arccosð�Þ < �.

When �ðvi; v̂viÞ is small, we can choose a constant � with absolute value 1 so that k�vi � v̂vik2 � �ðvi; v̂viÞ.
In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will use

angle to measure the difference between a computed space ŜS and the true space S:

�ðS; ŜSÞ ¼ acute angle between S and ŜS
¼ max

s2S
s6¼0

min
ŝs2ŜS
ŝs6¼0

�ðs; ŝsÞ or max
ŝs2ŜS
ŝs 6¼0

min
s2S
s6¼0

�ðs; ŝsÞ ð3Þ

�ðS; ŜSÞ may be computed as follows. Let S be a matrix whose columns are orthonormal and spanS.

Similarly let ŜS be an orthonormal matrix with columns spanning ŜS. Then

�ðS; ŜSÞ ¼ arccos�minðSHŜSÞ:
Finally, we remark on the accuracy of the bounds when they are large. Relative errors like kx̂x� xk=kxk
and angular errors like �ðv̂vi; viÞ are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol 	< , or ‘approximately less than’, instead of the usual �. Thus, when these bounds are close to 1

or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.
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2.12.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the x minimizing kAx� bk2. Let x̂x be the solution computed using one of the methods described above.

We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and has
full rank.

Then the computed solution x̂x has a small normwise backward error. In other words x̂x minimizes
kðAþ EÞx̂x� ðbþ fÞk2, where

max
kEk2
kAk2

;
kfk2
kbk2

��
� pðnÞ�

and pðnÞ is a modestly growing function of n and � is the machine precision. Let
	2ðAÞ ¼ �maxðAÞ=�minðAÞ, 
 ¼ kAx� bk2, and sinð�Þ ¼ 
=kbk2. Then if pðnÞ� is small enough, the

error x̂x� x is bounded by

kx� x̂xk2
kxk2 	< pðnÞ� 2	2ðAÞ

cosð�Þ þ tanð�Þ	2
2ðAÞ

� �
:

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (1996) for error bounds in this case, as well
as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the
linear system of equations

I A
AT 0

��
r
x

��
¼ b

0

��
:

By solving this linear system (see Chapter f07) componentwise error bounds can also be obtained Arioli et
al. (1989).

2.12.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (1996)).

The computed SVD, ÛU�̂�V̂V T , is nearly the exact SVD of Aþ E, i.e., Aþ E ¼ ðÛU þ �ÛUÞ�̂�ðV̂V þ �V̂V Þ is the
true SVD, so that ÛU þ �ÛU and V̂V þ �V̂V are both orthogonal, where kEk2=kAk2 � pðm;nÞ�,
k�ÛUk � pðm;nÞ�, and k�V̂V k � pðm;nÞ�. Here pðm;nÞ is a modestly growing function of m and n
and � is the machine precision. Each computed singular value �̂�i differs from the true �i by an amount
satisfying the bound

j�̂�i � �ij � pðm;nÞ��1:

Thus large singular values (those near �1) are computed to high relative accuracy and small ones may not
be.

The angular difference between the computed left singular vector ûui and the true ui satisfies the
approximate bound

�ðûui; uiÞ 	<
pðm;nÞ�kAk2

gapi

where

gapi ¼ min
j6¼i

j�i � �jj

is the absolute gap between �i and the nearest other singular value. Thus, if �i is close to other singular
values, its corresponding singular vector ui may be inaccurate. The same bound applies to the computed
right singular vector v̂vi and the true vector vi. The gaps may be easily obtained from the computed
singular values.

Let ŜS be the space spanned by a collection of computed left singular vectors fûui; i 2 Ig, where I is a
subset of the integers from 1 to n. Let S be the corresponding true space. Then
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�ðŜS;SÞ 	<
pðm;nÞ�kAk2

gapI
:

where

gapI ¼ minfj�i � �jj for i 2 I ; j 62 Ig

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster of

close singular values which is far away from any other singular value may have a well determined space ŜS

even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right singular
vectors fv̂vi; i 2 Ig.
In the special case of bidiagonal matrices, the singular values and singular vectors may be computed much
more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has nonzero entries only on the
main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a dense
matrix to bidiagonal form B can introduce additional errors, so the following bounds for the bidiagonal
case do not apply to the dense case.

Using the functions in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

j�̂�i � �ij � pðm;nÞ��i:

The computed left singular vector ûui has an angular error at most about

�ðûui; uiÞ 	<
pðm;nÞ�
relgapi

where

relgapi ¼ min
j6¼i

j�i � �jj=ð�i þ �jÞ

is the relative gap between �i and the nearest other singular value. The same bound applies to the right
singular vector v̂vi and vi. Since the relative gap may be much larger than the absolute gap, this error
bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.12.3 The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).

The computed eigendecomposition ẐZ�̂�ẐZT is nearly the exact eigendecomposition of Aþ E, i.e.,

Aþ E ¼ ðẐZ þ �ẐZÞ�̂�ðẐZ þ �ẐZÞT is the true eigendecomposition so that ẐZ þ �ẐZ is orthogonal, where

kEk2=kAk2 � pðnÞ� and k�ẐZk2 � pðnÞ� and pðnÞ is a modestly growing function of n and � is the

machine precision. Each computed eigenvalue �̂�i differs from the true �i by an amount satisfying the
bound

j�̂�i � �ij � pðnÞ�kAk2:

Thus large eigenvalues (those near max
i
j�ij ¼ kAk2) are computed to high relative accuracy and small ones

may not be.

The angular difference between the computed unit eigenvector ẑzi and the true zi satisfies the approximate
bound

�ðẑzi; ziÞ 	<
pðnÞ�kAk2

gapi

if pðnÞ� is small enough, where

gapi ¼ min
j 6¼i

j�i � �jj

is the absolute gap between �i and the nearest other eigenvalue. Thus, if �i is close to other eigenvalues,
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its corresponding eigenvector zi may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let ŜS be the invariant subspace spanned by a collection of eigenvectors fẑzi; i 2 Ig, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

�ðŜS; SÞ 	<
pðnÞ�kAk2

gapI

where

gapI ¼ minfj�i � �jj for i 2 I ; j 62 Ig

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close

eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace ŜS
even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T , functions in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al. (1999) for further details.

2.12.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A� �B, AB� �I and BA� �I. In each case A and B
are real symmetric (or complex Hermitian) and B is positive-definite. We consider each case in turn,
assuming that functions in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the the symmetric problem. In all cases

gapi ¼ min
j 6¼i

j�i � �jj

is the absolute gap between �i and the nearest other eigenvalue.

1. A� �B. The computed eigenvalues �̂�i can differ from the true eigenvalues �i by an amount

j�̂�i � �ij 	< pðnÞ�kB�1k2kAk2:

The angular difference between the computed eigenvector ẑzi and the true eigenvector zi is

�ðẑzi; ziÞ 	<
pðnÞ�kB�1k2kAk2ð	2ðBÞÞ1=2

gapi
:

2. AB� �I or BA� �I. The computed eigenvalues �̂�i can differ from the true eigenvalues �i by an
amount

j�̂�i � �ij 	< pðnÞ�kBk2kAk2:

The angular difference between the computed eigenvector ẑzi and the true eigenvector zi is

�ðẑzi; ziÞ 	<
qðnÞ�kBk2kAk2ð	2ðBÞÞ1=2

gapi
:

These error bounds are large when B is ill-conditioned with respect to inversion (	2ðBÞ is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here. One
way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as for
example with a graded matrix.

1. A� �B. Let D ¼ diagðb�1=2
11 ; . . . ; b�1=2

nn Þ be a diagonal matrix. Then replace B by DBD and A by

DAD in the above bounds.

2. AB� �I or BA� �I. Let D ¼ diagðb�1=2
11 ; . . . ; b�1=2

nn Þ be a diagonal matrix. Then replace B by

DBD and A by D�1AD�1 in the above bounds.

Further details can be found in Anderson et al. (1999).
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2.12.5 The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarize the bounds. Further details can be found in Anderson et al. (1999).

We let �̂�i be the ith computed eigenvalue and �i the ith true eigenvalue. Let v̂vi be the corresponding
computed right eigenvector, and vi the true right eigenvector (so Avi ¼ �ivi). If I is a subset of the
integers from 1 to n, we let �I denote the average of the selected eigenvalues: �I ¼ ð

P
i2I �iÞ=ð

P
i2I 1Þ,

and similarly for �̂�I. We also let SI denote the subspace spanned by fvi; i 2 Ig; it is called a right

invariant subspace because if v is any vector in SI then Av is also in SI . ŜSI is the corresponding
computed subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the exact
eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices Aþ E, where
kEk � pðnÞ�kAk. Some of the bounds are stated in terms of kEk2 and others in terms of kEkF ; one
may use pðnÞ� for either quantity.

Functions are provided so that, for each (�̂�i; v̂vi) pair the two values si and sepi, or for a selected subset I
of eigenvalues the values sI and sepI can be obtained, for which the error bounds in Table 2 are true for
sufficiently small kEk, (which is why they are called asymptotic):

Simple eigenvalue j�̂�i � �ij 	< kEk2=si

Eigenvalue cluster j�̂�I � �I 	< kEk2=sI

Eigenvector �ð#̂#i; #iÞ 	< kEkF=sepi

Invariant subspace �ðŜSI ; SIÞ 	< kEkF=sepI

Table 2
Asymptotic error bounds for the nonsymmetric

eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small kEk. The
global error bounds of Table 3 are guaranteed to hold for all kEkF < s
 sep=4:

Simple eigenvalue j�̂�i � �ij � nkEk2=si Holds for all E

Eigenvalue cluster j�̂�I � �I j � 2kEk2=sI Requires kEkF < sI 
 sepI=4

Eigenvector �ð#̂#i; #iÞ � arctanð2kEkF=ðsepi � 4kEkF=siÞÞ Requires kEkF < si 
 sepi=4

Invariant subspace �ðŜSI ; SIÞ � arctanð2kEkF=ðsepI � 4kEkF=sIÞÞ Requires kEkF < sI 
 sepI=4

Table 3
Global error bounds for the nonsymmetric eigenproblem

2.12.6 Balancing and condition for the nonsymmetric eigenproblem

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper

triangular (closer to Schur form): A0 ¼ PAPT , where P is a permutation matrix. If A0 is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to reduce it

to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of A0 more

nearly equal in norm: A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect to the
eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter, II/11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.
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Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. (1999).

2.12.7 The generalized nonsymmetric eigenvalue problem

The algorithms for the generalized nonsymmetric eigenvalue problem are normwise backward stable: they
compute the exact eigenvalues (as the pairs ð�; �Þ), eigenvectors and deflating subspaces of slightly
perturbed pairs ðAþ E;Bþ F Þ, where

jjðE;F ÞjjF � pðnÞ�jjðA;BÞjjF :
Currently functions are not provided for computing bounds on the eigenvalues, eigenvectors and deflating
subspaces; these will be provided at a future mark.

2.12.8 Balancing the generalized eigenvalue problem

As with the standard nonsymmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair ðA;BÞ in order to make its eigenproblem easier; permutation and scaling, which
together are referred to as balancing, as indicated in the following two steps.

1. The balancing function first attempts to permute A and B to block upper triangular form by a
similarity transformation:

PAPT ¼ F ¼
F 11 F 12 F 13

F 22 F 23

F 33

1
A

0
@ ;

PBPT ¼ G ¼
G11 G12 G13

G22 G23

G33

1
A

0
@ ;

where P is a permutation matrix, F 11, F 33, G11 and G33 are upper triangular. Then the diagonal
elements of the matrix ðF 11; G11Þ and ðG33; H33Þ are generalized eigenvalues of ðA;BÞ. The rest of
the generalized eigenvalues are given by the matrix pair ðF 22; G22Þ. Subsequent operations to
compute the eigenvalues of ðA;BÞ need only be applied to the matrix ðF 22; G22Þ; this can save a
significant amount of work if ðF 22; G22Þ is smaller than the original matrix pair ðA;BÞ. If no suitable
permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing function applies a diagonal similary transformation to ðF;GÞ, to make the rows and
columns of ðF 22; G22Þ as close as in norm as possible:

DFD�1 ¼
I

D22

I

1
A

0
@ F 11 F 12 F 13

F 22 F 23

F 33

1
A

0
@ I

D�1
22

I

1
A

0
@ ;

DGD�1 ¼
I

D22

I

1
A

0
@ G11 G12 G13

G22 G23

G33

1
A

0
@ I

D�1
22

I

1
A

0
@ :

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the norm
of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.13 Block Algorithms

A number of the functions in this chapter use what is termed a block algorithm. This means that at each
major step of the algorithm a block of rows or columns is updated, and much of the computation is
performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed by
calls to the Level 3 BLAS (see Chapter f16), which are the key to achieving high performance on many
modern computers. In the case of the QR algorithm for reducing an upper Hessenberg matrix to Schur
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form, a multishift strategy is used in order to improve performance. See Golub and Van Loan (1996) or
Anderson et al. (1999) for more about block algorithms and the multishift strategy.

The performance of a block algorithm varies to some extent with the block size – that is, the number of
rows or columns per block. This is a machine-dependent parameter, which is set to a suitable value when
the library is implemented on each range of machines. Users of the library do not normally need to be
aware of what value is being used. Different block sizes may be used for different functions. Values in
the range 16 to 64 are typical.

On more conventional machines there is often no advantage from using a block algorithm, and then the
functions use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level 2
BLAS (see Chapter f16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

The tables in the following sub-sections show the functions which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG function short name
and the LAPACK function name from which the NAG function long name is derived by prepending nag_
(see Section 3.2).

For many computations it is necessary to call two or more functions in sequence. Some commonly
required sequences of functions are indicated below; an asterisk (�) against a function name means that the
sequence of calls is illustrated in the example program for that function. (But remember that Black Box
functions for the same computations may be provided in Chapter f02 or Chapter f04.)

3.1.1 Orthogonal factorizations

Functions are provided for QR factorization (with and without column pivoting), and for LQ factorization
(without pivoting only), of a general real or complex rectangular matrix.

The factorization functions do not form the matrix Q explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional functions are provided to generate all or part of Q explicitly if it
is required, or to apply Q in its factored form to another matrix (specifically to compute one of the matrix

products QC, QTC, CQ or CQT with QT replaced by QH if C and Q are complex).

Factorize
without
pivoting

Factorize
with
pivoting

Generate
Matrix Q

Apply
matrix Q

QR factorization,
real matrices

f08aec
DGEQRF

f08bec
DGEQPF

f08afc
DORGQR

f08agc
DORMQR

LQ factorization,
real matrices

f08ahc
DGELQF

f08ajc
DORGLQ

f08akc
DORMLQ

QR factorization,
complex matrices

f08asc
ZGEQRF

f08bsc
ZGEQPF

f08atc
ZUNGQR

f08auc
ZUNMQR

LQ factorization,
complex matrices

f08avc
ZGELQF

f08awc
ZUNGLQ

f08axc
ZUNMLQ

To solve linear least-squares problems, as described in Section 2.2.1 or Section 2.2.3, functions based on
the QR factorization can be used:

real data, full-rank problem f08aec*, f08agc, f16yjc
complex data, full-rank problem f08asc*, f08auc, f16zjc
real data, rank-deficient problem f08bec*, f08agc, f16yjc
complex data, rank-deficient problem f08bsc*, f08auc, f16zjc
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To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, functions based on the LQ factorization can be used:

real data, full-rank problem f08ahc*, f16yjc, f08akc
complex data, full-rank problem f08avc*, f16zjc, f08axc

3.1.2 Singular value problems

Functions are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form B

by an orthogonal transformation A ¼ QBPT (or by a unitary transformation A ¼ QBPH if A is complex).
Different functions allow a full matrix A to be stored conventionally (see Section 3.3.1), or a band matrix
to use band storage (see Section 3.3.3).

The functions for reducing full matrices do not form the matrix Q or P explicitly; additional functions are
provided to generate all or part of them, or to apply them to another matrix, as with the functions for
orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The functions for reducing band matrices have options to generate Q or P if required.

Further functions are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same functions can be used to compute the singular value decomposition of a real or
complex matrix that has been reduced to bidiagonal form.

Reduce to
bidiagonal
form

Generate
matrix Q

or PT

Apply
matrix Q

or P

Reduce band
matrix to
bidiagonal
form

SVD of
bidiagonal
form (QR
algorithm)

real matrices f08kec
DGEBRD

f08kfc
DORGBR

f08kgc
DORMBR

f08lec
DGBBRD

f08mec
DBDSQR

complex matrices f08ksc
ZGEBRD

f08ktc
ZUNGBR

f08kuc
ZUNMBR

f08lsc
ZGBBRD

f08msc
ZBDSQR

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors f08kec, f08kfc*, f08mec
complex matrix, singular values and vectors f08ksc, f08ktc*, f08msc

Rectangular matrix (banded)

real matrix, singular values and vectors f08lec
complex matrix, singular values and vectors f08lsc

To use the singular value decomposition to solve a linear least-squares problem, as described in Section 2.4,
the following functions are required:

real data: f08kec, f08kgc, f08kfc, f08mec, f06yac
complex data: f08ksc, f08kuc, f08ktc, f08msc, f06zac

3.1.3 Symmetric eigenvalue problems

Functions are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal form

T by an orthogonal similarity transformation A ¼ QTQT (or by a unitary transformation A ¼ QTQH if A
is complex). Different functions allow a full matrix A to be stored conventionally (see Section 3.3.1) or in
packed storage (see Section 3.3.2); or a band matrix to use band storage (see Section 3.3.3).

The functions for reducing full matrices do not form the matrix Q explicitly; additional functions are
provided to generate Q, or to apply it to another matrix, as with the functions for orthogonal factorizations.
Explicit generation of Q is required before using the QR algorithm to find all the eigenvectors of A;
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application of Q to another matrix is required after eigenvectors of T have been found by inverse iteration,
in order to transform them to eigenvectors of A.

The functions for reducing band matrices have an option to generate Q if required.

Reduce to
tridiagonal
form

Generate
matrix Q

Apply
matrix Q

real symmetric matrices f08fec
DSYTRD

f08ffc
DORGTR

f08fgc
DORMTR

real symmetric matrices
(packed storage)

f08gec
DSPTRD

f08gfc
DOPGTR

f08ggc
DOPMTR

real symmetric band matrices f08hec
DSBTRD

complex Hermitian matrices f08fsc
ZHETRD

f08ftc
ZUNGTR

f08fuc
ZUNMTR

complex Hermitian matrices
(packed storage)

f08gsc
ZHPTRD

f08gtc
ZUPGTR

f08guc
ZUPMTR

complex Hermitian band matrices f08hsc
ZHBTRD

A variety of functions are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix T , some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same functions can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real or Complex Hermitian

all eigenvalues (root-free QR algorithm) f08jfc
all eigenvalues (root-free QR algorithm called by divide and conquer) f08jcc
selected eigenvalues (bisection) f08jjc

The original (non-reduced) matrix is Real

all eigenvalues and eigenvectors (QR algorithm) f08jec
all eigenvalues and eigenvectors (divide and conquer) f08jcc
all eigenvalues and eigenvectors (positive-definite case) f08jgc
selected eigenvectors (inverse iteration) f08jkc

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) f08jsc
all eigenvalues and eigenvectors (positive-definite case) f08juc
selected eigenvectors (inverse iteration) f08jxc

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.5.

Sequences for computing eigenvalues and eigenvectors

Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide and conquer) f08fcc
all eigenvalues and eigenvectors (using QR algorithm) f08fec, f08ffc*, f08jec
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08fec, f08jjc, f08jkc,

f08fgc*
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Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide and conquer) f08gcc
all eigenvalues and eigenvectors (using QR algorithm) f08gec, f08gfc*, f08jec
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08gec, f08jjc, f08jkc,

f08ggc*

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide and conquer) f08hcc
all eigenvalues and eigenvectors (using QR algorithm) f08hec*, f08jec

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide and conquer) f08fqc
all eigenvalues and eigenvectors (using QR algorithm) f08fsc, f08ftc*, f08jsc
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08fsc, f08jjc, f08jxc,

f08fuc*

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide and conquer) f08gqc
all eigenvalues and eigenvectors (using QR algorithm) f08gsc, f08gtc*, f08jsc
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08gsc, f08jjc, f08jxc,

f08guc*

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide and conquer) f08hqc
all eigenvalues and eigenvectors (using QR algorithm) f08hsc*, f08jsc

3.1.4 Generalized symmetric-definite eigenvalue problems

Functions are provided for reducing each of the problems Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x to an
equivalent standard eigenvalue problem Cy ¼ �y. Different functions allow the matrices to be stored
either conventionally or in packed storage. The positive-definite matrix B must first be factorized using a
function from Chapter f07. There is also a function which reduces the problem Ax ¼ �Bx where A and
B are banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky
factorization for which a function in Chapter f08 is provided.

Reduce to
standard problem

Reduce to
standard problem
(packed storage)

Reduce to
standard problem
(band matrices)

real symmetric matrices f08sec
DSYGST

f08tec
DSPGST

f08uec
DSBGST

complex Hermitian matrices f08ssc
ZHEGST

f08tsc
ZHPGST

f08usc
ZHBGST

The equivalent standard problem can then be solved using the functions discussed in Section 3.1.3. For
example, to compute all the eigenvalues, the following functions must be called:

real symmetric-definite problem f07fdc, f08sec*, f08fec, f08jfc
real symmetric-definite problem, packed storage f07gdc, f08tec*, f08gec, f08jfc
real symmetric-definite banded problem f08ufc*, f08uec*, f08hec, f08jfc
complex Hermitian-definite problem f07frc, f08ssc*, f08fsc, f08jfc
complex Hermitian-definite problem, packed storage f07grc, f08tsc*, f08gsc, f08jfc
complex Hermitian-definite banded problem f08utc*, f08usc*, f08hsc, f08jfc

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.6; functions from Chapter f16
may be used for this.
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3.1.5 Nonsymmetric eigenvalue problems

Functions are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an

orthogonal similarity transformation A ¼ QHQT (or by a unitary transformation A ¼ QHQH if A is
complex).

These functions do not form the matrix Q explicitly; additional functions are provided to generate Q, or to
apply it to another matrix, as with the functions for orthogonal factorizations. Explicit generation of Q is
required before using the QR algorithm on H to compute the Schur vectors; application of Q to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Functions are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.12.6. Companion functions are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to
Hessenberg
form

Generate
matrix Q

Apply
matrix Q

Balance Backtransform
vectors after
balancing

real matrices f08nec
DGEHRD

f08nfc
DORGHR

f08ngc
DORMHR

f08nhc
DGEBAL

f08njc
DGEBAK

complex matrices f08nsc
ZGEHRD

f08ntc
ZUNGHR

f08nuc
ZUNMHR

f08nvc
ZGEBAL

f08nwc
ZGEBAK

Functions are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional functions estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.12.5.

Eigenvalues
and Schur
factorization
(QR algorithm)

Eigenvectors
from
Hessenberg
form (inverse
iteration)

Eigenvectors
from Schur
factorization

Sensitivities of
eigenvalues
and
eigenvectors

real matrices f08pec
DHSEQR

f08pkc
DHSEIN

f08qkc
DTREVC

f08qlc
DTRSNA

complex matrices f08psc
ZHSEQR

f08pxc
ZHSEIN

f08qxc
ZTREVC

f08qyc
ZTRSNA

Finally functions are provided for re-ordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The functions nag_dtrexc (f08qfc) and nag_ztrexc
(f08qtc) simply swap two diagonal elements or blocks, and may need to be called repeatedly to achieve a
desired order. The functions nag_dtrsen (f08qgc) and nag_ztrsen (f08quc) perform the whole re-ordering
process for the important special case where a specified cluster of eigenvalues is to appear at the top of the
Schur form; if the Schur vectors are re-ordered at the same time, they yield an orthonormal basis of the
invariant subspace corresponding to the specified cluster of eigenvalues. These functions can also compute
the sensitivities of the cluster of eigenvalues and the invariant subspace.
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Reorder Schur
factorization

Reorder Schur factorization,
find basis of invariant
subspace and estimate
sensitivities

real matrices f08qfc
DTREXC

f08qgc
DTRSEN

complex matrices f08qtc
ZTREXC

f08quc
ZTRSEN

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.9:

real matrix, all eigenvalues and Schur factorization f08nec, f08nfc*, f08pec
real matrix, all eigenvalues and selected eigenvectors f08nec, f08pec, f08pkc,

f08ngc*
real matrix, all eigenvalues and eigenvectors (with balancing) f08nhc*, f08nec, f08nfc,

f08pec, f08pkc, f08njc
complex matrix, all eigenvalues and Schur factorization f08nsc, f08ntc*, f08psc
complex matrix, all eigenvalues and selected eigenvectors f08nsc, f08psc, f08pxc,

f08nuc*
complex matrix, all eigenvalues and eigenvectors (with balancing) f08nvc*, f08nsc, f08ntc,

f08psc, f08pxc, f08nwc

3.1.6 Generalized nonsymmetric eigenvalue problems

Functions are provided to reduce a real or complex matrix pair ðA1; R1Þ, where A1 is general and R1 is

upper triangular, to generalized upper Hessenberg form by orthogonal transformations A1 ¼ Q1HZT
1 ,

R1 ¼ Q1RZT
1 , (or by unitary transformations A1 ¼ Q1HZH

1 , R ¼ Q1R1Z
H
1 , in the complex case). These

functions can optionally return Q1 and/or Z1. Note that to transform a general matrix pair ðA;BÞ to the

form ðA1; R1Þ a QR factorization of B (B ¼ ~QQR1) should first be performed and the matrix A1 obtained

as A1 ¼ ~QQTA (see Section 3.1.1 above).

Functions are also provided to balance a general matrix pair before reducing it to generalized Hessenberg
form, as described in Section 2.12.8. Companion functions are provided to transform vectors of the
balanced pair to those of the original matrix pair.

Reduce to
generalized
Hessenberg form

Balance Backtransform
vectors after
balancing

real matrices f08wec
DGGHRD

f08whc
DGGBAL

f08wjc
DGGBAK

complex matrices f08wsc
ZGGHRD

f08wvc
ZGGBAL

f08wwc
ZGGBAK

Functions are provided to compute the eigenvalues (as the pairs ð�; �Þ) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.
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Eigenvalues
and generalized
Schur factorization
(QZ algorithm)

Eigenvectors
from generalized
Schur factorization

real matrices f08xec
DHGEQZ

f08ykc
DTGEVC

complex matrices f08xsc
ZHGEQZ

f08yxc
ZTGEVC

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors

real matrix pair, all eigenvalues (with balancing) f08whc, f08aec, f08agc,
f08wec, f08xec*

real matrix pair, all eigenvalues and generalized Schur factorization f08aec, f08agc, f08afc,
f08wec, f08xec

real matrix pair, all eigenvalues and eigenvectors (with balancing) f08whc, f08aec, f08agc,
f16qhc, f16qfc, f08afc,
f08wec, f08xec, f08ykc*,
f08wjc

complex matrix pair, all eigenvalues (with balancing) f08wvc, f08asc, f08auc,
f08wsc, f08xsc*

complex matrix pair, all eigenvalues and generalized Schur
factorization

f08asc, f08auc, f08atc,
f08wsc, f08xsc

complex matrix pair, all eigenvalues and eigenvectors (with
balancing)

f08wvc, f08asc, f08auc,
f16thc, f16tfc, f08atc,
f08wsc, f08xsc, f08yxc*,
f08wwc

3.1.7 Sylvester’s equation

Functions are provided to solve the real or complex Sylvester equation AX �XB ¼ C, where A and B
are upper quasi-triangular if real, or upper triangular if complex. To solve the general form of Sylvester’s
equation in which A and B are general square matrices, A and B must be reduced to upper (quasi-)
triangular form by the Schur factorization, using functions described in Section 3.1.5. For more details,
see the documents for the functions listed below.

solve Sylvester’s equation

real matrices f08qhc
DTRSYL

complex matrices f08qvc
ZTRSYL

3.2 NAG Names and LAPACK Names

As well as the NAG function short name (beginning f08-), the tables in Section 3.1 show the LAPACK
function names in double precision.

The functions may be called either by their NAG short names or by their NAG long names which contain
their double precision LAPACK names.

References to Chapter f08 functions in the manual normally include the LAPACK double precision names,
for example nag_dgeqrf (f08aec). The LAPACK function names follow a simple scheme (which is similar
to that used for the BLAS in Chapter f16). Each name has the structure XYYZZZ, where the components
have the following meanings:
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– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision
D – real, double precision
C – complex, single precision
Z – complex, double precision

– the 2nd and 3rd letters YY indicate the type of the matrix A or matrix pair ðA;BÞ (and in some cases
the storage scheme):

BD – bidiagonal
GB – general band
GE – general
GG – general pair (B may be triangular)
HG – generalized upper Hessenberg
HS – upper Hessenberg
OP – (real) orthogonal (packed storage)
UP – (complex) unitary (packed storage)
OR – (real) orthogonal
UN – (complex) unitary
PT – symmetric or Hermitian positive-definite tridiagonal
SB – (real) symmetric band
HB – (complex) Hermitian band
SP – symmetric (packed storage)
HP – Hermitian (packed storage)
ST – (real) symmetric tridiagonal
SY – symmetric
HE – Hermitian
TG – triangular pair (one may be quasi-triangular)
TR – triangular (or quasi-triangular)

– the last 3 letters ZZZ indicate the computation performed. For example, QRF is a QR factorization.

Thus the function nag_dgeqrf performs a QR factorization of a real general matrix in a single precision
implementation of the Library.

3.3 Matrix Storage Schemes

In this chapter the following storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed storage for symmetric or Hermitian matrices;

– packed storage for orthogonal or unitary matrices;

– band storage for general, symmetric or Hermitian band matrices;

– storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.

These storage schemes are compatible with those used in Chapter f16 and Chapter f07, but different
schemes for packed, band and tridiagonal storage are used in a few older functions in Chapter f01,
Chapter f03, Chapter f03 and Chapter f04.

In the examples below, � indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant leading rows and columns of the arrays.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.2.1.4 of the Essential
Introduction: a matrix A is stored in a one-dimensional array a, with matrix element ai;j stored column-

wise in array element a½ðj� 1Þ 
 pdaþ i� 1
 or row-wise in array element a½ði� 1Þ 
 pdaþ j� 1

where pda is the principle dimension of the array (i.e., the stride separating row or column elements of the
matrix respectively). Most functions in this chapter contain the order argument which can be set to
Nag_ColMajor for column-wise storage or Nag_RowMajor for row-wise storage of matrices. Where
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groups of functions are intended to be used together, the value of the order argument passed must be
consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below.

For example, when n ¼ 3:

order uplo Triangular matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11 � � a12 a22 � a13 a23 a33

Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11 a12 a13 � a22 a23 � � a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11 a21 a31 � a22 a32 � � a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11 � � a21 a22 � a31 a32 a33

functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

For example, when n ¼ 3:

order uplo Hermitian matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
�aa12 a22 a23
�aa13 �aa23 a33

1
A

0
@ a11 � � a12 a22 � a13 a23 a33

Nag_RowMajor Nag_Upper a11 a12 a13
�aa12 a22 a23
�aa13 �aa23 a33

1
A

0
@ a11 a12 a13 � a22 a23 � � a33

Nag_ColMajor Nag_Lower a11 �aa21 �aa31
a21 a22 �aa32
a31 a32 a33

1
A

0
@ a11 a21 a31 � a22 a32 � � a33

Nag_RowMajor Nag_Lower a11 �aa21 �aa31
a21 a22 �aa32
a31 a32 a33

1
A

0
@ a11 � � a21 a22 � a31 a32 a33

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by columns or rows in a one-dimensional array. In Chapters f07 and f08,
arrays which hold matrices in packed storage have names ending in p. The storage of matrix elements ai;j
are stored in the packed array ap as follows:
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if uplo ¼ Nag Upper then

if order ¼ Nag ColMajor, aij is stored in ap½ði� 1Þ þ jðj� 1Þ=2
 for i � j;

if order ¼ Nag RowMajor, aij is stored in ap½ðj� 1Þ þ ð2n� iÞði� 1Þ=2
 for i � j;

if uplo ¼ Nag Lower then

if order ¼ Nag ColMajor, aij is stored in ap½ði� 1Þ þ ð2n� jÞðj� 1Þ=2
 for j � i;

if order ¼ Nag RowMajor, aij is stored in ap½ðj� 1Þ þ iði� 1Þ=2
 for j � i.

For example:

order uplo Triangle of matrix A Packed storage in array ap

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11 a12a22|fflffl{zfflffl} a13a23a33|fflfflfflfflffl{zfflfflfflfflffl}

Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11a12a13|fflfflfflfflffl{zfflfflfflfflffl} a22a23|fflffl{zfflffl} a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11a21a31|fflfflfflfflffl{zfflfflfflfflffl} a22a32|fflffl{zfflffl} a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11 a21a22|fflffl{zfflffl} a31a32 a33|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with kl sub-diagonals and ku super-diagonals may be stored compactly in a notional two-
dimensional array with kl þ ku þ 1 rows and n columns if stored column-wise or n rows and kl þ ku þ 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in a
column of the two-dimensional array). These storage schemes should only be used in practice if kl,
ku � n, although the functions in Chapter f07 and Chapter f08 work correctly for all values of kl and ku.
In Chapter f07 and Chapter f08 arrays which hold matrices in band storage have names ending in b.

To be precise, elements of matrix elements aij are stored as follows:

if order ¼ Nag ColMajor, aij is stored in ab½ðku þ i� jÞ 
 ldabþ j
;

if order ¼ Nag RowMajor, aij is stored in ab½ðkl þ j� iÞ 
 pdabþ i
;

where pdab � kl þ ku þ 1 is the stride between diagonal elements and where
maxð1; i� klÞ � j � minðn; iþ kuÞ.
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For example, when n ¼ 5, kl ¼ 2 and ku ¼ 1:

Band matrix A Band storage in array ab

order ¼ Nag ColMajor order ¼ Nag RowMajor

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

� a12 a23 a34 a45
a11 a22 a33 a44 a55
a21 a32 a43 a54 �
a31 a42 a53 � �

� � a11 a12
� a21 a22 a23
a31 a32 a33 a34
a42 a43 a44 a45
a53 a54 a55 �

The elements marked � in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions.

Triangular band matrices are stored in the same format, with either kl ¼ 0 if upper triangular, or ku ¼ 0 if
lower triangular.

For symmetric or Hermitian band matrices with k sub-diagonals or super-diagonals, only the upper or
lower triangle (as specified by uplo) need be stored:

if uplo ¼ Nag Upper then

if order ¼ Nag ColMajor, aij is stored in ab½ðj� 1Þ 
 pdabþ kþ i� j
;

if order ¼ Nag RowMajor, aij is stored in ab½ði� 1Þ 
 pdabþ j� i
;

for maxð1; j� kÞ � i � j;

if uplo ¼ Nag Lower then

if order ¼ Nag ColMajor, aij is stored in ab½ðj� 1Þ 
 pdabþ i� j
;

if order ¼ Nag RowMajor, aij is stored in ab½ði� 1Þ 
 pdabþ kþ j� i
;

for j � i � minðn; jþ kÞ;
where pdab � kþ 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n ¼ 5 and k ¼ 2:

uplo Hermitian band matrix A Band storage in array a

order ¼ Nag ColMajor order ¼ Nag RowMajor

Nag_Upper a11 a12 a13
�aa12 a22 a23 a24
�aa13 �aa23 a33 a34 a35

�aa24 �aa34 a44 a45
�aa35 �aa45 a55

1
CCCCA

0
BBBB@

� � a13 a24 a35
� a12 a23 a34 a45
a11 a22 a33 a44 a55

a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 �
a55 � �

Nag_Lower a11 �aa21 �aa31
a21 a22 �aa32 �aa42
a31 a32 a33 �aa43 �aa53

a42 a43 a44 �aa54
a53 a54 a55

1
CCCCA

0
BBBB@

a11 a22 a33 a44 a55
a21 a32 a43 a54 �
a31 a42 a53 � �

� � a11
� a21 a22
a31 a32 a33
a42 a43 a44
a53 a54 a55

Note that different storage schemes for band matrices are used by some functions in Chapter f01,
Chapter f03, Chapter f03 and Chapter f04.
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3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n� 1 containing the off-diagonal elements. (Older
functions in Chapter f02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal matrices that are by definition purely real. In addition, some
complex triangular matrices computed by f08 functions are defined by the algorithm to have real diagonal
elements – in QR factorization, for example.

If such matrices are supplied as input to f08 functions, the imaginary parts of the diagonal elements are not
referenced, but are assumed to be zero. If such matrices are returned as output by f08 functions, the
computed imaginary parts are explicitly set to zero.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG Library
as a product of elementary reflectors – also referred to as elementary Householder matrices (usually
denoted Hi). For example,

Q ¼ H1H2 � � �Hk:

Most users need not be aware of the details, because functions are provided to work with this

representation, either to generate all or part of Q explicitly, or to multiply a given matrix by Q or QT (QH

in the complex case) without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the form

H ¼ I � �vvH ð4Þ

where � is a scalar, and v is an n element vector, with j� j2kvk22 ¼ 2
 Reð�Þ; v is often referred to as the

Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation (4), which can be removed in various ways. The
representation used in Chapter f08 and in LAPACK (which differs from those used in some of the
functions in Chapter f01, Chapter f02, Chapter f04 and Chapter f16) sets v1 ¼ 1; hence v1 need not be
stored. In real arithmetic, 1 � � � 2, except that � ¼ 0 implies H ¼ I.

In complex arithmetic, � may be complex, and satisfies 1 � Reð�Þ � 2 and j� � 1j � 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The
advantage of allowing � to be complex is that, given an arbitrary complex vector x;H can be computed so
that

HHx ¼ �ð1; 0; . . . ; 0ÞT

with real �. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Parameter Conventions

3.4.1 Option parameters

In addition to the order argument of type Nag_OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

f08fec(Nag_RowMajor,Nag_Upper,...)
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3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case the
computation (or part of it) is skipped. Negative dimensions are regarded as an error.

4 Decision Tree

4.1 General purpose functions (eigenvalues and eigenvectors)

Tree 1: Real Symmetric Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the
eigenvalues required? yes

Is A tridiagonal?
yes

f08jfc or f08jcc

no

Is A band matrix?
yes

(f08hec f08jfc) or
f08hec

no

Is one triangle of A
stored as a linear
array?

yes
(f08gec f08jfc) or

f08gcc

no

(f08fec f08jfc) or
f08fcc

no

Is A tridiagonal?
yes

f08jjc

no

Is A a band matrix?
yes

f08hec f08jjc

no

Is one triangle of A
stored as a linear
array?

yes
f08gec f08jjc

no

f08fec f08jjc

no

Are all eigenvalues
and eigenvectors
required?

yes
Is A tridiagonal?

yes
f08jec or f08jcc

no

Is A a band matrix?
yes

(f08hec f08jec) or
f08hcc

no

Is one traingle of A
stored as a linear
array?

yes
(f08gec f08gfc f08jec)

or f08gcc

no

(f08fec f08ffc f08jec)
or f08fcc

no
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Is A tridiagonal?
yes

f08jjc f08jkc

no

Is one triangle of A
stored as a linear
array?

yes
f08gec f08jjc f08jkc

f08ggc

no

f08fec f08jjc f08jkc
f08fgc
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Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Are A and B band
matrices? yes

f08ufc f08uec f08hec
f08jfc

no

Are A and B stored
with one triangle as a
linear array?

yes
f07gdc f08tec f08gec

f08jfc

no

f07fdc f08sec f08fec
f08jfc

no

Are A and B band
matrices? yes

f08ufc f08uec f08hec
f08jjc

no

Are A and B stored
with one triangle as a
linear array?

yes
f07gdc f08tec f08gec

f08jjc

no

f07fdc f08sec f08gec
f08jjc

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored
with one triangle as a
linear array?

yes
f07gdc f08tec f08gec
f08gfc f08jec f06plc

no

f07fdc f08sec f08fec
f08ffc f08jec f16yjc

no

Are A and B band
matrices? yes

f08ufc f08uec f08hec
f08jkc f16yjc

no

Are A and B stored
with one triangle as a
linear array?

yes

f07gdc f08tec f08gec
f08jjc f08jkc f08ggc

f06plc

no

f07fdc f08sec f08fec
f08jjc f08jkc f08fgc

f16yjc

Note: the functions for band matrices only handle the problem Ax ¼ �Bx; the other functions handle all three

types of problems (Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x) except that, if the problem is BAx ¼ �x and

eigenvectors are required, f06phc must be used instead of f06plc, and f06yfc instead of f16yjc.
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Tree 3: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues required?
yes

Is A an upper Hessenberg
matrix? yes

f08pec

no

f08nhc f08nec f08pec

no

Is the Schur factorization of A
required? yes

Is A an upper Hessenberg
matrix? yes

f08pec

no

f08nec f08nfc f08pec f08njc

no

Are all eigenvectors required?
yes

Is A an upper Hessenberg
matrix? yes

f08pec f08qkc

no

f08nhc f08nec f08nfc f08pec
f08qkc f08njc

no

Is A an upper Hessenberg
matrix? yes

f08pec f08pkc

no

f08nhc f08nec f08pec f08pkc
f08ngc f08njc
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Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues only required?
yes

Are A and B in generalized
upper Hessenberg form? yes

f08xec

no

f08whc f08aec f08agc f08wec
f08xec

no

Is the generalized Schur
factorization of A and B
required?

yes
Are A and B in generalized
upper Hessenberg form? yes

f08xec

no

f08aec f08agc f16qhc f16qfc
f08afc f08wec f08xec f08ykc

no

Are A and B in generalized
upper Hessenberg form? yes

f08xec f08ykc

no

f08whc f08aec f08agc f16qhc
f16qfc f08afc f08wec f08xec

f08ykc f08wjc
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Tree 5: Complex Hermitian Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the
eigenvalues required? yes

Is A a band matrix?
yes

(f08hsc f08jfc) or
f08hqc

no

Is one triangle of A
stored as a linear
array?

yes
(f08gsc f08jfc) or

f08gqc

no

(f08fsc f08jfc) or
f08fqc

no

Is A a band matrix?
yes

f08hsc f08jjc

no

Is one triangle of A
stored as a linear
array?

yes
f08gsc f08jjc

no

f08fsc f08jjc

no

Are all eigenvalues
and eigenvectors
required?

yes
Is A a band matrix?

yes
(f08hsc f08jsc) or

f08hqc

no

Is one triangle of A
stored as a linear
array?

yes
(f08gsc f08gtc f08jsc)

or f08gqc

no

(f08fsc f08ftc f08jsc)
or f08fqc

no

Is one triangle of A
stored as a linear
array?

yes
f08gsc f08jjc f08jxc

f08guc

no

f08fsc f08jjc f08jxc
f08fuc
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Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all eigenvalues
required? yes

Are A and B stored
with one triangle as a
linear array?

yes
f07grc f08tsc f08gsc

f08jfc

no

f07frc f08ssc f08fsc
f08jfc

no

Are A and B stored
with one triangle as a
linear array?

yes
f07grc f08tsc f08gsc

f08jjc

no

f07frc f08ssc f08gsc
f08jjc

no

Are all eigenvalues
and eigenvectors
required?

yes

Are A and B stored
with one triangle as a
linear array?

yes
f07grc f08tsc f08gsc

f08gtc f06psc

no

f07frc f08ssc f08fsc
f08ftc f08jsc f16zjc

no

Are A and B stored
with one triangle as a
linear array?

yes

f07grc f08tsc f08gsc
f08jjc f08jxc f08guc

f06slc

no

f07frc f08ssc f08fsc
f08jjc f08jxc f08fuc

f16zjc

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3645/7] f08.35



Tree 7: Complex non-Hermitian Eigenvalue Problems

Are eigenvalues only required?
yes

Is A an upper Hessenberg
matrix? yes

f08psc

no

f08nvc f08nsc f08psc

no

Is the Schur factorization of A
required? yes

Is A an upper Hessenberg
matrix? yes

f08psc

no

f08nsc f08ntc f08psc f08nwc

no

Are all eigenvectors required?
yes

Is A an upper Hessenberg
matrix? yes

f08psc f08qxc

no

f08nvc f08nsc f08ntc f08psc
f08qxc f08nwc

no

Is A an upper Hessenberg
matrix? yes

f08psc f08pxc

no

f08nvc f08nsc f08psc f08pxc
f08nuc f08nwc
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Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems

Are eigenvalues only required?
yes

Are A and B in generalized
upper Hessenberg form? yes

f08xsc

no

f08wvc f08asc f08auc f08wsc
f08xsc

no

Is the generalized Schur
factorization of A and B
required?

yes
Are A and B in generalized
upper Hessenberg form? yes

f08xsc

no

f08asc f08auc f16thc f16tfc
f08atc f08wsc f08xsc f08yxc

no

Are A and B in generalized
upper Hessenberg form? yes

f08xsc f08yxc

no

f08wvc f08asc f08auc f16thc
f16tfc f08atc f08wsc f08xsc

f08yxc f08wwc
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4.2 General purpose functions (singular value decomposition)

Is A a complex matrix? yes Is A banded? yes
f08lsc f08msc

no

Are singular values only
required? yes

f08ksc f08msc

no

f08ksc f08ktc f08msc

no

Is A bidiagonal? yes
f08mec

no

Is A banded? yes
f08lec f08mec

no

Are singular values only
required? yes

f08kec f08mec

no

f08kec f08kfc f08mec

5 Index

Backtransformation of eigenvectors from those of balanced forms:
complex matrix ................................................................................................... nag_zgebak (f08nwc)
real matrix ........................................................................................................... nag_dgebak (f08njc)

Balancing:
complex general matrix ...................................................................................... nag_zgebal (f08nvc)
real general matrix .............................................................................................. nag_dgebal (f08nhc)

Eigenvalue problems for condensed forms of matrices:
complex Hermitian matrix:

eigenvalues and eigenvectors:
band matrix:

all eigenvalues and eigenvectors by a divide and conquer algorithm using packed storage
nag_zhbevd (f08hqc)

general matrix:
all eigenvalues and eigenvectors by a divide and conquer algorithm nag_zheevd (f08fqc)
all eigenvalues and eigenvectors by a divide and conquer algorithm using packed storage

nag_zhpevd (f08gqc)
eigenvalues only:

band matrix:
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm using packed
storage ................................................................................................. nag_zhbevd (f08hqc)

general matrix:
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

nag_zheevd (f08fqc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm using packed
storage ................................................................................................. nag_zhpevd (f08gqc)

complex upper Hessenberg matrix, reduced from complex general matrix:
eigenvalues and Schur factorization ............................................................. nag_zhseqr (f08psc)
selected right and/or left eigenvectors by inverse iteration ......................... nag_zhsein (f08pxc)
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real bidiagonal matrix:
singular value decomposition:

after reduction from complex general matrix ......................................... nag_zbdsqr (f08msc)
after reduction from real general matrix ................................................ nag_dbdsqr (f08mec)

real symmetric matrix:
eigenvalues and eigenvectors:

band matrix:
all eigenvalues and eigenvectors by a divide and conquer algorithm nag_dsbevd (f08hcc)

general matrix:
all eigenvalues and eigenvectors by a divide and conquer algorithm nag_dsyevd (f08fcc)
all eigenvalues and eigenvectors by a divide and conquer algorithm using packed storage

nag_dspevd (f08gcc)
eigenvalues only:

band matrix:
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

nag_dsbevd (f08hcc)
general matrix:

all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm
nag_dsyevd (f08fcc)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm using packed
storage ................................................................................................. nag_dspevd (f08gcc)

real symmetric tridiagonal matrix:
eigenvalues and eigenvectors:

after reduction from complex Hermitian matrix:
all eigenvalues and eigenvectors ........................................................ nag_zsteqr (f08jsc)
selected eigenvectors by inverse iteration ......................................... nag_zstein (f08jxc)

all eigenvalues and eigenvectors ............................................................. nag_dsteqr (f08jec)
all eigenvalues and eigenvectors by a divide and conquer algorithm after reduction from real
symmetric matrix: .................................................................................... nag_dstevd (f08jcc)
selected eigenvectors by inverse iteration .............................................. nag_dstein (f08jkc)

eigenvalues only:
all eigenvalues by root-free QR algorithm ............................................ nag_dsterf (f08jfc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

nag_dstevd (f08jcc)
selected eigenvalues by bisection ........................................................... nag_dstebz (f08jjc)

real upper Hessenberg matrix, reduced from real general matrix:
eigenvalues and Schur factorization ............................................................. nag_dhseqr (f08pec)
selected right and/or left eigenvectors by inverse iteration ......................... nag_dhsein (f08pkc)

Eigenvalues and generalized Schur factorization
complex generalized upper Hessenberg form ................................................... nag_zhgeqz (f08xsc)
real generalized upper Hessenberg form ........................................................... nag_dhgeqz (f08xec)

Left and right eigenvectors of a pair of matrices:
complex upper triangular matrices ..................................................................... nag_ztgevc (f08yxc)
real quasi-triangular matrices ............................................................................. nag_dtgevc (f08ykc)

LQ factorization and related operations:
complex matrices:

apply unitary matrix ...................................................................................... nag_zunmlq (f08axc)
factorization .................................................................................................... nag_zgelqf (f08avc)
form all or part of unitary matrix ................................................................ nag_zunglq (f08awc)

real matrices:
apply orthogonal matrix ................................................................................ nag_dormlq (f08akc)
factorization .................................................................................................... nag_dgelqf (f08ahc)
form all or part of orthogonal matrix .......................................................... nag_dorglq (f08ajc)

Operations on Schur factorization of a general matrix:
complex matrix:

compute left and/or right eigenvectors ......................................................... nag_ztrevc (f08qxc)
estimate sensitivities of eigenvalues and/or eigenvectors ............................ nag_ztrsna (f08qyc)
re-order Schur factorization ........................................................................... nag_ztrexc (f08qtc)
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re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities
nag_ztrsen (f08quc)

real matrix:
compute left and/or right eigenvectors ......................................................... nag_dtrevc (f08qkc)
estimate sensitivities of eigenvalues and/or eigenvectors ............................ nag_dtrsna (f08qlc)
re-order Schur factorization ........................................................................... nag_dtrexc (f08qfc)
re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities

nag_dtrsen (f08qgc)
QR factorization and related operations:

complex matrices:
apply unitary matrix ...................................................................................... nag_zunmqr (f08auc)
factorization .................................................................................................... nag_zgeqrf (f08asc)
form all or part of unitary matrix ................................................................ nag_zungqr (f08atc)

real matrices:
apply orthogonal matrix ................................................................................ nag_dormqr (f08agc)
factorization .................................................................................................... nag_dgeqrf (f08aec)
form all or part of orthogonal matrix .......................................................... nag_dorgqr (f08afc)

Reduction of a pair of general matrices to generalized upper Hessenberg form
orthogonal reduction, real matrices .................................................................... nag_dgghrd (f08wec)
unitary reduction, complex matrices .................................................................. nag_zgghrd (f08wsc)

Reduction of eigenvalue problems to condensed forms, and related operations:
complex general matrix to upper Hessenberg form:

apply orthogonal matrix ................................................................................ nag_zunmhr (f08nuc)
form orthogonal matrix .................................................................................. nag_zunghr (f08ntc)
reduce to Hessenberg form ........................................................................... nag_zgehrd (f08nsc)

complex Hermitian band matrix to real symmetric tridiagonal form .............. nag_zhbtrd (f08hsc)
complex Hermitian matrix to real symmetric tridiagonal form:

apply unitary matrix ...................................................................................... nag_zunmtr (f08fuc)
form unitary matrix ........................................................................................ nag_zungtr (f08ftc)
reduce to tridiagonal form ............................................................................. nag_zhetrd (f08fsc)

complex rectangular band matrix to real upper bidiagonal form .................... nag_zgbbrd (f08lsc)
complex rectangular matrix to real bidiagonal form:

apply unitary matrix ...................................................................................... nag_zunmbr (f08kuc)
form unitary matrix ........................................................................................ nag_zungbr (f08ktc)
reduce to bidiagonal form ............................................................................. nag_zgebrd (f08ksc)

real general matrix to upper Hessenberg form:
apply orthogonal matrix ................................................................................ nag_dormhr (f08ngc)
form orthogonal matrix .................................................................................. nag_dorghr (f08nfc)
reduce to Hessenberg form ........................................................................... nag_dgehrd (f08nec)

real rectangular band matrix to upper bidiagonal form ................................... nag_dgbbrd (f08lec)
real rectangular matrix to bidiagonal form:

apply orthogonal matrix ................................................................................ nag_dormbr (f08kgc)
form orthogonal matrix .................................................................................. nag_dorgbr (f08kfc)
reduce to bidiagonal form ............................................................................. nag_dgebrd (f08kec)

real symmetric band matrix to symmetric tridiagonal form ............................. nag_dsbtrd (f08hec)
real symmetric matrix to symmetric tridiagonal form:

apply orthogonal matrix ................................................................................ nag_dormtr (f08fgc)
form orthogonal matrix .................................................................................. nag_dorgtr (f08ffc)
reduce to tridiagonal form ............................................................................. nag_dsytrd (f08fec)

Reduction of generalized eigenproblems to standard eigenproblems:
complex Hermitian-definite banded generalized eigenproblem Ax ¼ �Bx .... nag_zhbgst (f08usc)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x

nag_zhegst (f08ssc)
real symmetric-definite banded generalized eigenproblem Ax ¼ �Bx ............ nag_dsbgst (f08uec)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x

nag_dsygst (f08sec)
Solve reduced form of Sylvester matrix equation:

complex matrices ................................................................................................ nag_ztrsyl (f08qvc)
real matrices ........................................................................................................ nag_dtrsyl (f08qhc)
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Split Cholesky factorization:
complex Hermitian positive-definite band matrix ............................................. nag_zpbstf (f08utc)
real symmetric positive-definite band matrix .................................................... nag_dpbstf (f08ufc)

Transform eigenvectors of a pair of matrices
from complex balanced to those supplied to nag_zggbal (f08wvc) ................ nag_zggbak (f08wwc)
from real balanced to those supplied to nag_dggbal (f08whc) ........................ nag_dggbak (f08wjc)

6 Functions Withdrawn or Scheduled for Withdrawal

None.
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